

Solving today's problems ... Learning to prevent tomorrow's

# Adaptation Improvement Program Introduction

Presented by James Thomas SERC Program Director, AIO-2a

June 6, 2001



### **SERC Mission Overview**

#### Mission

- **♦ Solve current and future problems**
- **♦ Improve FAA** workforce competency
- ♦ Apply SwE concepts across IPT's and functional organizations

- Be an FAA-wide software engineering resource
- Leverage government, academic, and industry resources through inter-disciplinary teams to:
  - solve mission-critical problems
  - maintain a close watch on evolving technologies
  - extend the state of the practice of FAA Software Engineering (SwE)
- Provide Integrated Product Teams and other functional organizations access to world-class subject matter experts
- Focus on enterprise-wide "FAA" problems not just project specific
- Key goal is to increase FAA SwE competencies (become intelligent software purchasers)

June 6, 2001

2



### **Changing Environment**

- Hardware oriented '60s and '70s
  - Small apps, small or no OS, limited storage, assembly languages, unique interfaces
- Software oriented '80s and '90s
  - Large apps, multi-tasking OS, substantial storage, high level languages, standardized interfaces
- Adaptation oriented environment today
  - CAS apps with glue code, distributed processing, almost unlimited storage, write once – run anywhere languages, industry standard interfaces

June 6, 2001 3



### **Changing Environment**

- Future Vision
  - Focus on delivery of services instead of systems
  - Systems become virtual entities
  - Massive parallel processing
  - Wide-area distributed processing
  - Extensive Re-use libraries
  - Self-tuning or self-learning systems
  - Data assets are registered, defined, and traceable
  - Data standards are adopted
  - Knowledge Management



### Today's Approach

- Limit Hardware Configurations/Rev Levels
  - Scale to facility load
  - Minimize unique systems to support
- Single "National" Software Baseline
  - Contains superset of all required functionality
- Adapt the rest!
  - Site-specific items, user preferences, performance parameters, hardware and software parameters
  - Some program logic/rules moved to adaptation

June 6, 2001 5



### **Adaptation Driving Factors**

- Requirement for more accurate and precise data
  - Earth model used to precisely locate objects, not relative positions to NAS automation system plane
  - Digital maps must be aligned to automation system objects; not simple overlays that can be shifted
  - Mosaic and fusion radar trackers require uniform reference model; must work across facility boundaries
  - Reduces system "tweaking" and iterative rebuilds and system retest
  - Shifts burden to data owners to provide certified data



### **Adaptation Driving Factors**

- Adaptation data for new systems are generally more extensive and complex
  - ATC rules captured as adapted logic
  - "Correct" values can sometimes only be determined through long term data collection and statistical analysis, or by human observation
  - Can create an almost limitless set of test cases
  - Subjective tests must be used to validate data as satisfactory; absolute certification may not be possible; multiple satisfactory solutions may exist

June 6, 2001 7



### **Adaptation Driving Factors**

- Existing methods are cumbersome
  - Multiple sources of raw data from multiple databases
  - Data sometimes re-entered multiple times
  - Reliance on manual processes
  - Files are often delivered by package express companies
  - Some automation systems are "inheritors" of upstream "as adapted" data





### Framing the Adaptation Problem

- Growth in quantity and complexity of adaptation in new systems is challenging our ability to deploy, maintain, and afford
- Supportability issues are exacerbated by 56 day update cycles; never reach steady-state
- Sheer number of supported facilities is a huge multiplication factor

June 6, 2001

### Adaptation Improvement Program (AIP)

#### **Improved Data**

Ensure that required source data is readily available, current, accurate, and possesses sufficient precision.

### New Technology and Infrastructure Develop a modern EAA adaptation en

Develop a modern FAA adaptation environment that will enable process improvements.



**Program Goal**: Evolve NAS adaptation to support cost effective

NAS performance growth and modernization

FY-2001 Objective: Ensure the STARS adaptation process is as

effective & efficient as possible



#### Improved Processes

Redesign adaptation processes to take advantage of the improved adaptation environment.

June 6, 2001



#### Improved SOPs & LOAs

Develop new methods to create, access, and maintain agreements and procedures that are less ambiguous, and can be interpreted and translated into a computer readable form. 11



### Improved Data (Future)

- All data assets are registered, defined, and configuration managed; validity can be traced to certified sources
- Data is captured electronically at source in standard formats for immediate "broad" distribution – write once and read many times
- Data is "pushed" to subscribers over broadband connections when it changes; is packaged for a specific user



### Improved Processes (Future)

- Data stewards assume responsibility for CM and data quality (accuracy, precision, ...)
- Requirements for new data items are managed at the NAS level
- Data access and tools are integrated together into the user work environment
- "Smart" tools analyze data (semi-)automatically for quality, trends, ...

June 6, 2001



### Operational Directives (Future)

- ATC procedures captured in Letters of Agreement (LOA) and Standard Operating Procedures (SOP)
- Move to standardized LOA form construction across FAA facilities and regions
- Ensure that embedded "rules" can be extracted
- Conversion of LOAs and SOPs into a selfdefining, computer interpretable form like an XML data stream



### **Essential Technological Ingredients**

- · High speed Internet-based service delivery
- Standards-based authentication and encryption
- Platform independence
- Thin client, central server concept for our direct adaptation customers
- Agreed upon APIs and inter-system interfaces
- Distributed processing model serving widely disparate, geographically separated servers
- Re-engineered processes to capitalize on enabling technology

June 6, 2001



### NAS Adaptation Services Environment

- Will leverage commercial e-Business solutions
  - Extensible and robust foundation architecture
- Provide an open-system, centralized services environment
  - Eliminates distribution of application updates and fixes
  - Applications can be developed by anyone
- Single portal for adaptation support work
  - "One stop shopping" for NAS researchers, developers, and maintainers
  - Simplifies security solutions





Jim Thomas





### Summary

- AIP is an R&D project focused on providing short-term, *production-quality* solutions to pressing adaptation needs (in FY-2001 and 2002)
- Moves FAA towards the future vision
- "Static" data in the Adaptation Data Mart
- Evolutionary delivery process to get product to the field quickly and learn from the users
- "e-Business type" technical architecture



### Finding Out More About Us

- Check our Website at <a href="http://www.faa.gov/aio">http://www.faa.gov/aio</a>
  Select SERC from the Menu
- Call us at 609-485-9000 (or -5264)
- FAX us at 609-484-8421
- E-mail me at James.Thomas@faa.gov